CHAPTER FIFTEEN
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WAVES

15.1 INTRODUCTION

In the previous Chapter, we studied the motion of objects
oscillating in isolation. What happens in a system, which is
a collection of such objects? A material medium provides
such an example. Here, elastic forces bind the constituents
to each other and, therefore, the motion of one affects that of
the other. If you drop a little pebble in a pond of still water,
the water surface gets disturbed. The disturbance does not
remain confined to one place, but propagates outward along
a circle. If you continue dropping pebbles in the pond, you
see circles rapidly moving outward from the point where the
water surface is disturbed. It gives a feeling as if the water is
moving outward from the point of disturbance. If you put
some cork pieces on the disturbed surface, it is seen that
the cork pieces move up and down but do not move away
from the centre of disturbance. This shows that the water
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Summary mass does not flow outward with the circles, but rather a
Points to ponder moving disturbance is created. Similarly, when we speak,
Exercises the sound moves outward from us, without any flow of air
Additional exercises from one part of the medium to another. The disturbances

produced in air are much less obvious and only our ears or
a microphone can detect them. These patterns, which move
without the actual physical transfer or flow of matter as a
whole, are called waves. In this Chapter, we will study such
waves.

Waves transport energy and the pattern of disturbance has
information that propagate from one point to another. All our
communications essentially depend on transmission of sig-
nals through waves. Speech means production of sound
waves in air and hearing amounts to their detection. Often,
communication involves different kinds of waves. For exam-
ple, sound waves may be first converted into an electric cur-
rent signal which in turn may generate an electromagnetic
wave that may be transmitted by an optical cable or via a
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satellite. Detection of the original signal will usu-
ally involve these steps in reverse order.

Not all waves require a medium for their
propagation. We know that light waves can
travel through vacuum. The light emitted by
stars, which are hundreds of light years away,
reaches us through inter-stellar space, which
is practically a vacuum.

The most familiar type of waves such as waves
on a string, water waves, sound waves, seismic
waves, etc. is the so-called mechanical waves.
These waves require a medium for propagation,
they cannot propagate through vacuum. They
involve oscillations of constituent particles and
depend on the elastic properties of the medium.
The electromagnetic waves that you will learn
in Class XII are a different type of wave.
Electromagnetic waves do not necessarily require
a medium - they can travel through vacuum.
Light, radiowaves, X-rays, are all electromagnetic
waves. In vacuum, all electromagnetic waves
have the same speed c, whose value is :

c=299, 792, 458 ms™. (15.1)

A third kind of wave is the so-called Matter
waves. They are associated with constituents of
matter : electrons, protons, neutrons, atoms and
molecules. They arise in quantum mechanical
description of nature that you will learn in your
later studies. Though conceptually more abstract
than mechanical or electro-magnetic waves, they
have already found applications in several
devices basic to modern technology; matter
waves associated with electrons are employed
in electron microscopes.

In this chapter we will study mechanical
waves, which require a material medium for
their propagation.

The aesthetic influence of waves on art and
literature is seen from very early times; yet the
first scientific analysis of wave motion dates back
to the seventeenth century. Some of the famous
scientists associated with the physics of wave
motion are Christiaan Huygens (1629-1695),
Robert Hooke and Isaac Newton. The
understanding of physics of waves followed the
physics of oscillations of masses tied to springs
and physics of the simple pendulum. Waves in
elastic media are intimately connected with
harmonic oscillations. (Stretched strings, coiled
springs, air, etc., are examples of elastic media).
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We shall illustrate this connection through
simple examples.

Consider a collection of springs connected to
one another as shown in Fig. 15.1. If the spring
at one end is pulled suddenly and released, the
disturbance travels to the other end. What has

— E
A
Fig. 15.1 A collection of springs connected to each
other. The end A is pulled suddenly
generating a disturbance, which then
propagates to the other end.

happened? The first spring is disturbed from its
equilibrium length. Since the second spring is
connected to the first, it is also stretched or
compressed, and so on. The disturbance moves
from one end to the other; but each spring only
executes small oscillations about its equilibrium
position. As a practical example of this situation,
consider a stationary train at a railway station.
Different bogies of the train are coupled to each
other through a spring coupling. When an
engine is attached at one end, it gives a push to
the bogie next to it; this push is transmitted from
one bogie to another without the entire train
being bodily displaced.

Now let us consider the propagation of sound
waves in air. As the wave passes through air, it
compresses or expands a small region of air. This
causes a change in the density of that region,
say dp, this change induces a change in pressure,
op, in that region. Pressure is force per unit area,
so there is a restoring force proportional to
the disturbance, just like in a spring. In this
case, the quantity similar to extension or
compression of the spring is the change in
density. If a region is compressed, the molecules
in that region are packed together, and they tend
to move out to the adjoining region, thereby
increasing the density or creating compression
in the adjoining region. Consequently, the air
in the first region undergoes rarefaction. If a
region is comparatively rarefied the surrounding
air will rush in making the rarefaction move to
the adjoining region. Thus, the compression or
rarefaction moves from one region to another,
making the propagation of a disturbance
possible in air.
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In solids, similar arguments can be made. In
a crystalline solid, atoms or group of atoms are
arranged in a periodic lattice. In these, each
atom or group of atoms is in equilibrium, due to
forces from the surrounding atoms. Displacing
one atom, keeping the others fixed, leads to
restoring forces, exactly as in a spring. So we
can think of atoms in a lattice as end points,
with springs between pairs of them.

In the subsequent sections of this chapter
we are going to discuss various characteristic
properties of waves.

15.2 TRANSVERSE AND LONGITUDINAL
WAVES

We have seen that motion of mechanical waves
involves oscillations of constituents of the
medium. If the constituents of the medium
oscillate perpendicular to the direction of wave
propagation, we call the wave a transverse wave.
If they oscillate along the direction of wave
propagation, we call the wave a longitudinal
wave.

Fig.15.2 shows the propagation of a single
pulse along a string, resulting from a single up
and down jerk. If the string is very long compared

y

.

Fig. 15.2 When a pulse travels along the length of a
stretched string (x-direction), the elements
of the string oscillate up and down (y-
direction)

Pulse ——p
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to the size of the pulse, the pulse will damp out
before it reaches the other end and reflection
from that end may be ignored. Fig. 15.3 shows a
similar situation, but this time the external
agent gives a continuous periodic sinusoidal up
and down jerk to one end of the string. The
resulting disturbance on the string is then a
sinusoidal wave. In either case the elements of
the string oscillate about their equilibrium mean

o -

Harmonic ———p

wave

.

Fig. 15.3 A harmonic (sinusoidal) wave travelling
along a stretched string is an example of a
transverse wave. An element of the string
in the region of the wave oscillates about
its equilibrium position perpendicular to the
direction of wave propagation.

position as the pulse or wave passes through
them. The oscillations are normal to the
direction of wave motion along the string, so this
is an example of transverse wave.

We can look at a wave in two ways. We can fix
an instant of time and picture the wave in space.
This will give us the shape of the wave as a
whole in space at a given instant. Another way
is to fix a location i.e. fix our attention on a
particular element of string and see its
oscillatory motion in time.

Fig. 15.4 describes the situation for
longitudinal waves in the most familiar example
of the propagation of sound waves. A long pipe
filled with air has a piston at one end. A single
sudden push forward and pull back of the piston
will generate a pulse of condensations (higher
density) and rarefactions (lower density) in the
medium (air). If the push-pull of the piston is
continuous and periodic (sinusoidal), a

Fig. 15.4 Longitudinal waves (sound) generated in a
pipe filled with air by moving the piston up
and down. A volume element of air oscillates
in the direction parallel to the direction of
wave propagation.
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sinusoidal wave will be generated propagating
in air along the length of the pipe. This is clearly
an example of longitudinal waves.

The waves considered above, transverse or
longitudinal, are travelling or progressive waves
since they travel from one part of the medium
to another. The material medium as a whole
does not move, as already noted. A stream, for
example, constitutes motion of water as a whole.
In a water wave, it is the disturbance that moves,
not water as a whole. Likewise a wind (motion
of air as a whole) should not be confused with a
sound wave which is a propagation of
disturbance (in pressure density) in air, without
the motion of air medium as a whole.

In transverse waves, the particle motion is
normal to the direction of propagation of the
wave. Therefore, as the wave propagates, each
element of the medium undergoes a shearing
strain. Transverse waves can, therefore, be
propagated only in those media, which can
sustain shearing stress, such as solids and not
in fluids. Fluids, as well as, solids can sustain
compressive strain; therefore, longitudinal
waves can be propagated in all elastic media.
For example, in medium like steel, both
transverse and longitudinal waves can
propagate, while air can sustain only
longitudinal waves. The waves on the surface
of water are of two kinds: capillary waves and
gravity waves. The former are ripples of fairly
short wavelength—not more than a few
centimetre—and the restoring force that
produces them is the surface tension of water.
Gravity waves have wavelengths typically
ranging from several metres to several hundred
meters. The restoring force that produces these
waves is the pull of gravity, which tends to keep
the water surface at its lowest level. The
oscillations of the particles in these waves are
not confined to the surface only, but extend with
diminishing amplitude to the very bottom. The
particle motion in water waves involves a
complicated motion—they not only move up and
down but also back and forth. The waves in an
ocean are the combination of both longitudinal
and transverse waves.

It is found that, generally, transverse and
longitudinal waves travel with different speed
in the same medium.
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b Example 15.1 Given below are some

examples of wave motion. State in each case

if the wave motion is transverse, longitudinal
or a combination of both:

(@) Motion of a kink in a longitudinal spring
produced by displacing one end of the
spring sideways.

(b) Waves produced in a cylinder
containing a liquid by moving its piston
back and forth.

(c) Waves produced by a motorboat sailing
in water.

(d) Ultrasonic waves in air produced by a
vibrating quartz crystal.

Answer
(a) Transverse and longitudinal
(b) Longitudinal
() Transverse and longitudinal
(d) Longitudinal |

15.3 DISPLACEMENT RELATION IN
A PROGRESSIVE WAVE

For mathematical description of a travelling
wave, we need a function of both position x and
time t. Such a function at every instant should
give the shape of the wave at that instant. Also,
at every given location, it should describe the
motion of the constituent of the medium at that
location. If we wish to describe a sinusoidal
travelling wave (such as the one shown in Fig.
15.3) the corresponding function must also be
sinusoidal. For convenience, we shall take the
wave to be transverse so that if the position of
the constituents of the medium is denoted by x,
the displacement from the equilibrium position
may be denoted by y. A sinusoidal travelling
wave is then described by:

y(x,t) = asin(kx — 0t + ¢) (15.2)
The term ¢ in the argument of sine function

means equivalently that we are considering a
linear combination of sine and cosine functions:

y(x,t) = Asin(kx — wt) + Bcos(lkx — wt) (15.3)
From Equations (15.2) and (15.3),

B
a= IA2+B2 and ¢: tan_l (Z)

To understand why Equation (15.2)
represents a sinusoidal travelling wave, take a
fixed instant, say t= t,. Then, the argument of
the sine function in Equation (15.2) is simply
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Iex + constant. Thus, the shape of the wave (at
any fixed instant) as a function of x is a sine
wave. Similarly, take a fixed location, say x = x.
Then, the argument of the sine function in
Equation (15.2) is constant -wt. The
displacement y, at a fixed location, thus, varies
sinusoidally with time. That is, the constituents
of the medium at different positions execute
simple harmonic motion. Finally, as tincreases,
xmust increase in the positive direction to keep
lex— ot + ¢ constant. Thus, Eq. (15.2) represents
a sinusiodal (harmonic) wave travelling along
the positive direction of the x-axis. On the other
hand, a function

y(x,t) = asin(kx + ot + ¢) (15.4)
represents a wave travelling in the negative
direction of x-axis. Fig. (15.5) gives the names of
the various physical quantities appearing in Eq.
(15.2) that we now interpret.

Yyl displacement as a function of
position x and time t

a : amplitude of a wave

0} : angular frequency of the wave

k : angular wave number

fo—ot+¢ initial phase angle (a+tx=0, t=0)

Fig. 15.5 The meaning of standard symbols in
Eq. (15.2)

Fig. 15.6 shows the plots of Eq. (15.2) for
different values of time differing by equal
intervals of time. In a wave, the crest is the
point of maximum positive displacement, the
trough is the point of maximum negative
displacement. To see how a wave travels, we
can fix attention on a crest and see how it
progresses with time. In the figure, this is
shown by a cross (X) on the crest. In the same
manner, we can see the motion of a particular
constituent of the medium at a fixed location,
say at the origin of the x-axis. This is shown
by a solid dot (°). The plots of Fig. 15.6 show
that with time, the solid dot (®) at the origin
moves periodically, i.e., the particle at the
origin oscillates about its mean position as
the wave progresses. This is true for any other
location also. We also see that during the time
the solid dot (°) has completed one full
oscillation, the crest has moved further by a
certain distance.

Fig. 15.6 A harmonic wave progressing along the
positive direction of x-axis at different times.

Using the plots of Fig. 15.6, we now define
the various quantities of Eq. (15.2).

15.3.1 Amplitude and Phase

In Eq. (15.2), since the sine function varies
between 1 and -1, the displacement y (x,) varies
between a and —a. We can take a to be a positive
constant, without any loss of generality. Then,
arepresents the maximum displacement of the
constituents of the medium from their
equilibrium position. Note that the displacement
y may be positive or negative, but a is positive.
It is called the amplitude of the wave.

The quantity (kx — ot + ¢) appearing as the
argument of the sine function in Eq. (15.2) is
called the phase of the wave. Given the
amplitude a, the phase determines the
displacement of the wave at any position and
at any instant. Clearly ¢ is the phase at x=10
and t = 0. Hence, ¢ is called the initial phase
angle. By suitable choice of origin on the x-axis
and the intial time, it is possible to have ¢ = O.
Thus there is no loss of generality in dropping
@, i.e., in taking Eq. (15.2) with ¢ = 0.
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15.3.2 Wavelength and Angular Wave
Number

The minimum distance between two points
having the same phase is called the wavelength
of the wave, usually denoted by A. For simplicity,
we can choose points of the same phase to be
crests or troughs. The wavelength is then the
distance between two consecutive crests or
troughs in a wave. Taking ¢ = 0 in Eq. (15.2),
the displacement at t = 0 is given by

y(x,0) = asin kx (15.5)

Since the sine function repeats its value after
every 2n change in angle,

sin kx = sin(kx + 2nn) = sink(x + 2%”)

That is the displacements at points x and at

2nrz
X +—
k

are the same, where n=1,2,3,... The least
distance between points with the same
displacement (at any given instant of time) is
obtained by taking n= 1. ), is then given by

27 2z
2{ = — or k = —

k A

k is the angular wave number or propagation
constant; its SI unit is radian per metre or

(15.6)

rad m™ "
15.3.3 Period, Angular Frequency and
Frequency

Fig. 15.7 shows again a sinusoidal plot. It
describes not the shape of the wave at a certain
instant but the displacement of an element (at
any fixed location) of the medium as a function
of time. We may for, simplicity, take Eq. (15.2)
with ¢ = 0 and monitor the motion of the element
say at x =( . We then get

y(0,t) = a sin(—wt)

= —asin wt

a /

< T b
Fig. 15.7 An element of a string at a fixed location

oscillates in time with amplitude a and
period T, as the wave passes over it.

Now, the period of oscillation of the wave is the
time it takes for an element to complete one full
oscillation. That is

—asin wt = —asin w(t + T)
= —asin(wt + &T)

Since sine function repeats after every 27,

2w

— a=—
wT =2x or T

® is called the angular frequency of the wave.
Its SI unit is rad s'. The frequency v is the
number of oscillations per second. Therefore,

(15.7)

1 o

V=—=—

T 2z
V is usually measured in hertz.
In the discussion above, reference has always
been made to a wave travelling along a string or
a transverse wave. In a longitudinal wave, the
displacement of an element of the medium is
parallel to the direction of propagation of the
wave. In Eq. (15.2), the displacement function

for a longitudinal wave is written as,

(15.8)

(15.9)

where s(x, t) is the displacement of an element
of the medium in the direction of propagation
of the wave at position xand time t. In Eq. (15.9),
ais the displacement amplitude; other
quantities have the same meaning as in case
of a transverse wave except that the
displacement function y (x, t) is to be replaced
by the function s (x, t).

s(x, §) = asin (kx- ot + @)

* Here again, Tadian’ could be dropped and the units could be written merely as m!. Thus, k represents 2x
times the number of waves (or the total phase difference) that can be accomumodated per unit length, with SI

units m.
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L Example 15.2 A wave travelling along a
string is described by,

y(x, t) = 0.005 sin (80.0 x- 3.0 1),

in which the numerical constants are in
SI units (0.005 m, 80.0 rad m™, and
3.0 rad s!). Calculate (a) the amplitude,
(b) the wavelength, and (c) the period and
frequency of the wave. Also, calculate the
displacement y of the wave at a distance
x=30.0 cm and time t=20s ?

Answer On comparing this displacement
equation with Eq. (15.2),

Y (x, t) = asin (kx - wt),

we find

(a) theamplitude of the wave is 0.005 m = 5 mm.

(b) the angular wave number k and angular
frequency w are

k=80.0 m!'and w=3.0 s

We, then, relate the wavelength A to k through
Eq. (15.6),
A=2n/k

B 2r
80.0 m™!
= 7.85 cm

() Now, we relate Tto w by the relation
T=2n/w

_ 2%
3.0s™
=2.09s

and frequency, v =1/T=0.48 Hz

The displacement y at x = 30.0 cm and
time t =20 s is given by

y =(0.005 m) sin (80.0 x 0.3 - 3.0 x 20)

= (0.005 m) sin (-36 + 12n)
= (0.005 m) sin (1.699)
= (0.005 m) sin (97% ~ 5 mm |

15.4 THE SPEED OF A TRAVELLING WAVE

To determine the speed of propagation of a
travelling wave, we can fix our attention on any
particular point on the wave (characterised by
some value of the phase) and see how that point
moves in time. It is convenient to look at the

motion of the crest of the wave. Fig. 15.8 gives
the shape of the wave at two instants of time,
which differ by a small time internal At. The
entire wave pattern is seen to shift to the right
(positive direction of x-axis) by a distance Ax. In
particular, the crest shown by a dot (e) moves a

r 3

Fig. 15.8 Progression of a harmonic wave from time
t tot + At. where At is a small interval.
The wave pattern as a whole shifts to the
right. The crest of the wave (or a point with
any fixed phase) moves right by the distance
Ax in time At.

distance Axin time At. The speed of the wave is
then Ax/At. We can put the dot (e) on a point
with any other phase. It will move with the same
speed v (otherwise the wave pattern will not
remain fixed). The motion of a fixed phase point

on the wave is given by
kx — wt = constant (15.10)

Thus, as time t changes, the position x of the
fixed phase point must change so that the phase
remains constant. Thus,

fex — ot = k(x+Ax) — o(t+Al)
or k Ax— wAt=0
Taking Ax, At vanishingly small, this gives

o (15.11)
dt k
Relating o to Tand kto A, we get
Uzz_ﬂvz/h/zi
27/ A T (15.12)

Eq. (15.12), a general relation for all
progressive waves, shows that in the time
required for one full oscillation by any
constituent of the medium, the wave pattern
travels a distance equal to the wavelength of the
wave. It should be noted that the speed of a
mechanical wave is determined by the inertial
(linear mass density for strings, mass density
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in general) and elastic properties (Young’s
modulus for linear media/ shear modulus, bulk
modulus) of the medium. The medium
determines the speed; Eq. (15.12) then relates
wavelength to frequency for the given speed. Of
course, as remarked earlier, the medium can
support both transverse and longitudinal waves,
which will have different speeds in the same
medium. Later in this chapter, we shall obtain
specific expressions for the speed of mechanical
waves in some media.

15.4.1 Speed of a Transverse Wave on
Stretched String

The speed of a mechanical wave is determined
by the restoring force setup in the medium when
it is disturbed and the inertial properties (mass
density) of the medium. The speed is expected to
be directly related to the former and inversely to
the latter. For waves on a string, the restoring
force is provided by the tension T in the string.
The inertial property will in this case be linear
mass density g, which is mass m of the string
divided by its length L. Using Newton’s Laws of
Motion, an exact formula for the wave speed on
a string can be derived, but this derivation is
outside the scope of this book. We shall,
therefore, use dimensional analysis. We already
know that dimensional analysis alone can never
yield the exact formula. The overall
dimensionless constant is always left
undetermined by dimensional analysis.

The dimension of u is [ML'] and that of T is
like force, namely [MLT?]. We need to combine
these dimensions to get the dimension of speed
v [LT']. Simple inspection shows that the
quantity T/u has the relevant dimension

[ MLT™ ]

[ ML—l:I [ ]
Thus if T and p are assumed to be the only
relevant physical quantities,

v =C I (15.13)

u

where C is the undetermined constant of
dimensional analysis. In the exact formula, it
turms out, C=1. The speed of transverse waves
on a stretched string is given by

v= L (15.14)

U

Note the important point that the speed v
depends only on the properties of the medium T
and u (T is a property of the stretched string
arising due to an external force). It does not
depend on wavelength or frequency of the wave
itself. In higher studies, you will come across
waves whose speed is not independent of
frequency of the wave. Of the two parameters 1
and v the source of disturbance determines the
frequency of the wave generated. Given the

Propagation of a pulse on a rope

£

velocity. Compare it with that obtained from Eq. (15.14).

This is also what happens with a thin metallic string of a musical instrument. The major difference is
that the velocity on a string is fairly high because of low mass per unit length, as compared to that on a
thick rope. The low velocity on a rope allows us to watch the motion and make measurements beautifully.

You can easily see the motion of a pulse on a rope. You can also see
its reflection from a rigid boundary and measure its velocity of travel.
You will need a rope of diameter 1 to 3 cm, two hooks and some
weights. You can perform this experiment in your classroom or
laboratory.

Take a long rope or thick string of diameter 1 to 3 cm, and tie it to
hooks on opposite walls in a hall or laboratory. Let one end pass on
a hook and hang some weight (about 1 to 5 kg) to it. The walls may
be about 3 to 5 m apart.

Take a stick or a rod and strike the rope hard at a point near one
end. This creates a pulse on the rope which now travels on it. You
can see it reaching the end and reflecting back from it. You can
check the phase relation between the incident pulse and reflected
pulse. You can easily watch two or three reflections before the pulse
dies out. You can take a stopwatch and find the time for the pulse
to travel the distance between the walls, and thus measure its

2022-23



WAVES

375

speed of the wave in the medium and the
frequency Eq. (15.12) then fixes the wavelength

5]
a=2
V (15.15)

Example 15.3 A steel wire 0.72 m long has
amass of 5.0 X102 kg. If the wire is under
a tension of 60 N, what is the speed of
transverse waves on the wire ?

Answer Mass per unit length of the wire,

_ 5.0x10° kg
- 0.72m
=6.9x10° kg m™'

Tension, T=60 N
The speed of wave on the wire is given by

T 60N

v=—= |— 27"  _—93ms!

u J6.9><10'3kgm'1 <

15.4.2 Speed of a Longitudinal Wave
(Speed of Sound)

In a longitudinal wave, the constituents of the
medium oscillate forward and backward in the
direction of propagation of the wave. We have
already seen that the sound waves travel in the
form of compressions and rarefactions of small
volume elements of air. The elastic property that
determines the stress under compressional
strain is the bulk modulus of the medium defined
by (see Chapter 9)

B=--2F 15.16
T AVIV (15.16)

Here, the change in pressure AP produces a

AV
volumetric strain 7 . Bhas the same dimension

as pressure and given in SI units in terms of
pascal (Pa). The inertial property relevant for the
propagation of wave is the mass density p, with
dimensions [ML®]. Simple inspection reveals
that quantity B/p has the relevant dimension:

[M L T2
[mt]

Thus, if Band P are considered to be the only
relevant physical quantities,

(15.17)

] [L2 -2]

v=C B

P

where, as before, Cis the undetermined constant
from dimensional analysis. The exact derivation
shows that C=1. Thus, the general formula for

longitudinal waves in a medium is:

(15.18)

v=|B

P
For a linear medium, like a solid bar, the
lateral expansion of the bar is negligible and we
may consider it to be only under longitudinal
strain. In that case, the relevant modulus of
elasticity is Young’'s modulus, which has the
same dimension as the Bulk modulus.
Dimensional analysis for this case is the same
as before and yields a relation like Eq. (15.18),
with an undetermined C, which the exact
derivation shows to be unity. Thus, the speed of
longitudinal waves in a solid bar is given by

(15.19)

v= ¥ (15.20)
0

where Y is the Young’'s modulus of the material
of the bar. Table 15.1 gives the speed of sound
in some media.

Table 15.1 Speed of Sound in some Media

Gases
Air (0°C) 331
Air (20°C) 343
Helium 965
Hydrogen 1284
Liquids
Water (0 °C) 1402
Water (20 °C) 1482
Seawater 1522
Solids
Aluminium 6420
Copper 3560
Steel 5941
Granite 6000
Vulcanised
Rubber 54

Liquids and solids generally have higher speed
of sound than gases. [Note for solids, the speed
being referred to is the speed of longitudinal
waves in the solid]. This happens because they
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are much more difficult to compress than gases
and so have much higher values of bulk modulus.
Now, see Eq. (15.19). Solids and liquids have
higher mass densities (p) than gases. But the
corresponding increase in both the modulus (B)
of solids and liquids is much higher. This is the
reason why the sound waves travel faster in
solids and liquids.

We can estimate the speed of sound in a gas
in the ideal gas approximation. For an ideal gas,
the pressure P, volume V and temperature T are
related by (see Chapter 11).

PV= Nk,T (15.21)

where N is the number of molecules in volume
V, k_is the Boltzmann constant and T the
temperature of the gas (in Kelvin). Therefore, for
an isothermal change it follows from Eq.(15.21)
that

VAP + PAV =0
AP
or e S
AV/V P
Hence, substituting in Eq. (15.16), we have
B=P

Therefore, from Eq. (15.19) the speed of a
longitudinal wave in an ideal gas is given by,

v = \/E (15.22)
o
This relation was first given by Newton and

is known as Newton’s formula.

Example 15.4 Estimate the speed of
sound in air at standard temperature and
pressure. The mass of 1 mole of air is
29.0 X103 kg.

Answer We know that 1 mole of any gas

occupies 22.4 litres at STP. Therefore, density

of air at STP is:

p, = (mass of one mole of air)/ (volume of one
mole of air at STP)

29.0x107° kg
T22.4x10° m®
= 1.29 kg m™
According to Newton’s formula for the speed

of sound in a medium, we get for the speed of
sound in air at STP,

_[1.01x10°Nm™
| 1.29kgm™

1/2
} =280ms! (15.23)
<
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The result shown in Eq.(15.23) is about 15%
smaller as compared to the experimental value
of 331 m s as given in Table 15.1. Where
did we go wrong ? If we examine the basic
assumption made by Newton that the pressure
variations in a medium during propagation of
sound are isothermal, we find that this is not
correct. It was pointed out by Laplace that the
pressure variations in the propagation of sound
waves are so fast that there is little time for the
heat flow to maintain constant temperature.
These variations, therefore, are adiabatic and
not isothermal. For adiabatic processes the ideal
gas satisfies the relation (see Section 12.8),

PV" = constant

ie. APV?) =0

or PyV' I AV+ VIAP=0

where 7y is the ratio of two specific heats,
c/C,.

Thus, for an ideal gas the adiabatic bulk
modulus is given by,

_ AP
“  TAV/V
= ’YP
The speed of sound is, therefore, from Eq.
(15.19), given by,

v= /ﬂ
0

This modification of Newton’s formula is referred
to as the Laplace correction. For air
y="7/5. Now using Eq. (15.24) to estimate the speed
of sound in air at STP, we get a value 331.3 m s/,
which agrees with the measured speed.

(15.24)

15.5 THE PRINCIPLE OF SUPERPOSITION
OF WAVES

What happens when two wave pulses travelling
in opposite directions cross each other
(Fig. 15.9)? It turns out that wave pulses
continue to retain their identities after they have
crossed. However, during the time they overlap,
the wave pattern is different from either of the
pulses. Figure 15.9 shows the situation when
two pulses of equal and opposite shapes move
towards each other. When the pulses overlap,
the resultant displacement is the algebraic sum
of the displacement due to each pulse. This is
known as the principle of superposition of waves.



